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CALCULATION OF THE STATISTICAL
CHARACTERISTICS OF A TURBULENT FLOW
UNDER THE ACTION OF EXTERNAL FORCES
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A study is made of the statistical characteristics of isotropic velocity and scalar fields in supply of the kinetic
energy of turbulence from the energy of the average flow. Two models based on the distributions of the ki-
netic turbulence energy and the intensity of scalar-field pulsations by wave numbers and length scales are
used for calculation of the statistical characteristics of turbulent velocity and scalar fields. The calculation re-
sults are compared to the data of the direct numerical modeling performed under the same initial conditions.

Introduction. A great deal of chemical reactions realized in industrial devices are "rapid" (i.e., the time of
chemical reaction is much shorter than the time of turbulent mixing). In this case, the chemical-reaction rate is deter-
mined by the rate of mixing of the reagents to the molecular level. Turbulent mixing seeks to make the scalar field
homogeneous, in so doing considerably intensifying this process due to the formation of large scalar gradients in the
flow. The joint action of turbulent transfer and diffusion makes the mixing (from a large-scale one to that at the mo-
lecular level) efficient.

The formalism of the probability density function of the turbulent pulsations is used to statistically describe
turbulent mixing [1]. Models based on the joint probability density function (JPDF) are used to study the turbulent re-
acting scalar field. Knowledge of a JPDF makes it possible to correctly average strongly nonlinear terms describing
chemical interaction in transfer equations for the concentrations of the mixture components and the temperature. Meth-
ods of construction of the equations for different JPDFs in turbulent flows have already been developed at present [1–
5]. Open equations for a number of JPDFs have been presented in [2]. Data of experiments and direct numerical
modeling as well as the assumptions of the Gaussian or another existing form of conditional distribution functions are
used to close them.

The conservative-scalar method where a special variable (conservative scalar), the transfer equations for which
contain no term describing chemical interaction, is constructed are widely used for description of flows with chemical
reactions. The conditional moments from the JPDF of the conservative scalar and its gradient (conditional scalar-dissi-
pation function, flame-surface density, etc.) are then used in the equations for nonconservative scalars. Also, the equa-
tion for the JPDF of the scalar and its gradient is used with allowance for the terms characterizing chemical
interaction, e.g., when it is necessary to calculate very low concentrations of harmful reaction products [6].

Closed equations for the JPDF of the scalar and its gradient have been presented in [6–8]. The models pre-
sented contain the unknown coefficients to determine which one must use experimental results and data of direct nu-
merical modeling or construct additional models.

Since the models mentioned in [6–8] for JPDFs are single-point ones from the viewpoint of the statistics used,
their coefficients must allow for the spatial turbulence structure. In the simplest case there are the characteristic space
and time scales of turbulence (characteristic frequencies). The presence of the known distribution of the kinetic turbu-
lence energy by length scales or by wave numbers makes it possible to determine these coefficients and those more
complex in nature.
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To find the coefficients one can use data of direct numerical modeling which contain the most detailed infor-
mation on the structure of the flow or flame mixed. However, the methods of direct numerical modeling require con-
siderable computational resources and are restricted to the cases of the simplest geometry and small Reynolds and
Pe′clet numbers; therefore, at the present time, statistical models remain, as previously, the basic means for investigat-
ing practical problems of turbulent mixing in both inert flows and flows with chemical reactions.

The present work seeks to extend the capabilities of two models for evaluation of the statistical characteristics
of turbulent velocity and scalar fields in the case of generation of kinetic turbulence energy and to compare the results
of numerical solution to the corresponding data of direct numerical modeling.

Models for Calculation of the Statistical Characteristics of Turbulent Velocity and Scalar Fields. The
closed equation for the JPDF of a scalar and the modulus of its gradient was obtained earlier in [8]. It includes the

following statistical characteristics of turbulent velocity and scalar fields as time-dependent coefficients: c2
__

(t), ε(t), χ(t),

Suc(t), and Dcc
(IV)(0, t).

The quantities mentioned can be obtained by solution of an auxiliary system of equations. Two models, i.e.,
systems of equations of transfer of turbulent energy and intensity of scalar pulsations by length scales [9] and by wave
numbers [10], have been proposed as such a system. The system of equations of turbulent-energy transfer and scalar-
pulsation intensity by length scales has the form
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and that by wave numbers has the form
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The procedures of numerical solution of these systems have been presented respectively in [9] and [10], and
the models have been checked by comparing to the data of direct numerical modeling in [11], where consideration has
been given to the turbulent velocity field (degenerated with time) without the generation of turbulence energy. The
procedure of selection of the constants β, γ, and α, σ of the models was described in this work.

The necessary coefficients can be determined by solution of the systems of equations (1), (2) and (3), (4) ac-
cording to the relations [11]
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Modification of the Models for the Case of Generation of Pulsation Energies. The turbulent velocity field
(degenerated with time) with the generation of turbulence energy has been considered in [9–11]. In the case where the
external force causing the generation of turbulence energy acts on the hydrodynamic field of turbulent pulsations, the
equation of transfer of turbulent energy must be supplemented with a term describing this action. On the basis of the
existing ideas of the spectrum of generation of kinetic turbulence energy in the case of homogeneous turbulence [12],
the right-hand side of the equation was supplemented with a term allowing for this generation with a prescribed tur-
bulent-energy distribution by length scales:
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where Lu is the parameter whose value is related to the length scale on which we have the generation of kinetic en-
ergy in the flow. The maximum of Sg(r) is accounted for by the scale rmax = Lu√2 . A factor of 4/3 in the expression
results from the fact that Eq. (1) has been written for the intensity of pulsations of one velocity component.

Analogously, Eq. (2) for the distribution P(c)(r, t) in the case of scalar-field-energy generation (caused, for ex-
ample, by the nonzero gradient of the average scalar field) must contain its own generation term
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where Lc is the parameter whose value is related to the length scale on which the scalar-field energy is generated and
Gc is half the integral rate of generation of scalar-field pulsations.

The rates of generation of pulsations of the velocity Gu and scalar Gc fields are dependent on flow. We can
evaluate them, using the following determinations:
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Here we use the ordinary rule of summation by double subscripts.
To close relations (9) we must indicate the method of computation of turbulent momentum and scalar flows

suiujt and suict. This can be done in a standard manner, just as in the widely used Kt–ε model:

suiujt = − C1 
Kt

ε
 




∂Ui

∂xj
 + 

∂Uj

∂xi




 + 

2

3
 δijKt ,   suict = − 

C2

Pr
 
Kt

2

ε
 
∂sCt

∂xj

or

suict = − C3 suiujt 
Kt

ε
 
∂sCt

∂xj
 ,

154



where C1 = 0.09, C2 = 0.255, C3 = 0.3, and Pr = 0.9.
The parameters of the distributions Lu and Lc have been evaluated by comparing them to the turbulence

macroscales. Under the assumption of homogeneous turbulence, the relations
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hold true. These evaluations can be refined, if the data of direct numerical modeling or experimental data are available.
Since Eqs. (1) and (2) have been supplemented with the terms of generation of kinetic turbulence energy and

intensity of scalar-field pulsations (7) and (8), such terms must also be introduced into Eqs. (3) and (4). For this pur-
pose we applied the transformations [13]
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Calculation Results. The results of numerical solution of systems (1), (2) and (3), (4), where the right-hand
sides of Eqs. (1) and (3) are supplemented with the generation terms (7) and (12) respectively, were compared to the
data of direct numerical modeling of turbulent velocity and scalar fields [14]. The generation of the intensity of turbu-
lent scalar pulsations was not prescribed (Sg

(c) = 0). The same spectra as those in testing models (1), (2) and (3), (4)
were used as the initial ones [15].

The length scale Lu must be prescribed in expressions for the terms (7) and (12) describing the generation of
kinetic turbulence energy in the flow. Since the turbulent energy in the flow is generated for small wave numbers, ac-
cording to the conditions of direct numerical modeling, the parameter Lu was selected so that, first, the maximum of
the distribution (12) was accounted for by small wave numbers and, second, integration of the distribution (12) by all
wave numbers yielded the value Gu = 4.149. The parameter Lu was selected first for the spectral model (3), but there-
after, using this parameter, we carried out calculations from model (1).

Figure 1 gives the time variation in the variance and dissipation of the field of velocity pulsations for two
models (1) and (3) and compares it to the data of direct numerical modeling [14].

In direct numerical modeling, at the initial step of mixing where the variance of the scalar field amounts to
50% of the initial one (t D 0.15), we observe a sharp growth in the variance of the velocity field; this growth is re-
lated to the external energy supply to the flow (Fig. 1a). The dissipation of the velocity field ε(t) grows nearly linearly
to its maximum value at t D 0.45 (Fig. 1b). From this instant, large vortices begin to disintegrate and their energy is
transferred to smaller ones. In the data of direct numerical modeling, the evolution of the variance and dissipation of
the velocity field is characterized by the presence of sharp peaks of different time and space scales, which is caused
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by the influence of the generation and disintegration of individual large vortices. Calculation from statistical models
actually represents the time averaging of these data.

In accordance with the growth in the variance, we have a growth in the rate of dissipation of scalar-field pul-
sations ε(t); it lasts to the instant of time t D 0.8, reaching the stationary value. As is seen in Fig. 1, model (3) for the
distributions by wave numbers better describes, on the whole, the data of direct numerical modeling for both the vari-
ance of velocity pulsations and the rate of dissipation of kinetic energy than model (1). It is noteworthy that the dis-
sipation-rate maxima in the calculations based on Eq. (3) are smaller in value and are shifted toward shorter times,
unlike the data of direct numerical modeling.

Analogous comparisons for the variance and dissipation of the scalar field have shown that the best agreement
with direct numerical modeling is demonstrated by model (3), (4) (Fig. 2).

Also, the calculation has shown that the mixed asymmetry is conservative to external actions (Fig. 3a). The
asymptotic value of Suc(t) throughout the time interval in question is close to a constant Suc C −0.5, which differs only
slightly from the case considered earlier without turbulent-energy supply [15].

Fig. 1. Time variation in the velocity variance (a) and dissipation (b): 1) direct
numerical modeling; 2) calculation from model (1), (2) with the term allowing
for the generation of kinetic turbulence energy (8); 3) calculation from model (3),
(4) with the term allowing for the generation of kinetic turbulence energy (12).

Fig. 2. Time variation in the scalar variance (a) and dissipation (b). The notation
is the same as in Fig. 1.
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Allowance for the external action on the hydrodynamic field has not affected, in practice, the character of
time variation in the function Dcc

(IV)(0, t). The changes are true only for the maximum of Dcc
(IV)(0, t) as compared to

the case without the generation of kinetic energy in the flow [11] (Fig. 3b).
For model (3), (4), there is a good agreement with direct numerical modeling relative to the time variation in
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 (Fig. 4a) and the Kolmogorov length scale η(t) (Fig. 4b).

The integral scale is held at a constant level, which is due to the fact that the stationary level of the variance of ve-
locity pulsations has been reached. The Kolmogorov length scale on the initial portion decreases once the stationary
regime has been reached because of the growth (caused by the total growth in the kinetic energy in the flow) in the
dissipation of the velocity field.

Fig. 3. Time variation in the mixed asymmetry of the derivatives of pulsatory
velocity and scalar fields (a) and the derivative of fourth order of the structural
function of second order of the scalar field with respect to the space variable for
the zero value of the space variable (b). The notation is the same as in Fig. 1.

Fig. 4. Time variation in the integral (a) and Kolmogorov (b) length scales. The
notation is the same as in Fig. 1.
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Conclusions. The results of the calculations of the statistical characteristics of a homogeneous turbulent flow
carried out from the models for the turbulent-energy distributions by length scales and wave numbers with allowance
for the supply of kinetic turbulence energy show a good agreement with the data of direct numerical modeling. A bet-
ter agreement is given by model (3), (4). Both statistical models can be used for calculation of turbulent mixing using
more complex models based on the formalism of the probability density function. In particular, they can be used as
additional models for determination of the coefficients involved in the equation for the JPDF of a scalar and its gra-
dient and for the conditional moments of this function [15].
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NOTATION

c2
__

(t), variance of scalar-field pulsations squared; sCt, average value of the scalar field; Dcc
(IV)(0, t), derivative

of fourth order of the structural function of second order of the scalar field with respect to the space variable for the
zero value of the space variable; E(k, t) and E(c)(k, t), distributions of the energy of turbulent velocity pulsations and
the energy of turbulent scalar pulsations by wave numbers respectively; Gu, integral rate of generation of kinetic en-
ergy; k, wave number; Kt, kinetic turbulence energy; L(t), macroscale; Pe, Pe′clet number; Pr, Prandtl number; P(r, t)
and P(c)(r, t), distributions of turbulent velocity pulsations and turbulent scalar pulsations by different length scales re-
spectively; q2

__
(t) = 2Kt, doubled kinetic turbulence energy; r, length scale; Re, Reynolds number; Suc(t), mixed asym-

metry of the gradient fields of velocity and scalar pulsations; t, time; uj, velocity-field pulsations; Ui and Uj; average
flow velocity; α, β, γ, and δ, constants; δij, Kronecker symbol; ε(t), rate of dissipation of velocity-field pulsations;
η(t), Kolmogorov length scale; λ, Taylor microscale; χ(t), rate of dissipation of scalar-field pulsations. Subscripts and
superscripts: c, quantity describing the scalar field; g, generation of turbulence energy; t, turbulence; u, quantity de-
scribing the velocity field; uc, quantity describing the mutual influence of turbulent velocity and scalar fields; max,
maximum; min, minimum; ′, derivative; D, integration variable.

REFERENCES

1. S. B. Pope, PDF methods for turbulent reactive flows, Progr. Energy Combust. Sci., 11, 119–192 (1985).
2. C. Dopazo, Recent development in PDF methods, in: S. N. B. Murty (Ed.),  Turbulent Reacting Flows, Aca-

demic Press, New York (1994), pp. 375–474.
3. E. E. O’Brien, PDF method in the theory of turbulent flows with chemical reactions, in: P. A. Libby and F. A.

Williams (Eds.), Turbulent Reacting Flows [Russian translation], Mir, Moscow (1983), pp. 252–296.
4. V. R. Kuznetsov and V. A. Sabel’nikov, Turbulence and Combustion [in Russian], Nauka, Moscow (1986).
5. V. A. Frost, N. N. Ivenskikh, and V. P. Krasitskii, Description of Turbulent Micromixing by Two-Point PDFs

[in Russian], Preprint No. 699 of the Institute of Problems in Mechanics of the Russian Academy of Sciences,
Moscow (2002).

6. L. Valino and C. Dopazo, Joint statistics of scalars and their gradients in nearly homogeneous turbulence, Adv.
Turbulence, No. 3, 312–323 (1991).

7. R. E. Meyers and E. E. O’Brien, Joint PDF of a scalar and its gradient at a point in turbulent flow, Combust.
Sci. Technol., 26, 123–134 (1981).

8. V. A. Sosinovich, V. A. Babenko, and Yu. V. Zhukova, A closed equation for the joint probability density
function of the magnitudes of fluctuations of a turbulent scalar reacting field and its gradient, Inzh.-Fiz. Zh., 71,
No. 5, 827–849 (1998).

9. V. A. Babenko, V. A. Sosinovich, and Yu. V. Zhukova, Derivation and numerical solution of a system of
equations for the single-point probability density and conventional rate of dissipation of turbulent pulsations of
a scalar field, Inzh.-Fiz. Zh., 72, No. 2, 275–288 (1999).

10. Yu. V. Zhukova, Calculation of the coefficients in the equation for the joint probability density function of the
scalar and its gradient, Vestsi Nats. Akad. Navuk Belarusi, Ser. Fiz.-Te′khn. Navuk, No. 4, 130–134 (2000).

158



11. V. A. Babenko, Yu. V. Zhukova, V. A. Sosinovich, and J. Hierro, Statistical coefficients in the equation for the
joint probability density function of a scalar and its gradient, Inzh.-Fiz. Zh., 77, No. 2, 65–74 (2004).

12. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Pt. 2, Nauka, Moscow (1967).
13. S. Panchev, Random Functions and Turbulence [in Russian], Gidrometeorologicheskoe Izd., Leningrad (1967).
14. J. Hierro, Metodos estadisticos para simular la evolucion de campos escalares y de gradientes en turbulencia

homogenea e isotropa, Ph.D. Thesis, Spain, Universidad de Zaragoza (2003).
15. V. A. Sosinovich, V. A. Babenko, A. D. Chorny, and Yu. V. Zhukova, PDF Modeling of Mixing in Homoge-

neous Turbulent Flows, Heat and Mass Transfer Institute Press, Minsk (2004).

159


